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Abstract. A derivation of the line groups, which are the symmetry groups of the stereo- 
regular polymer molecules, is presented. 

Every line group is an extension of a one-dimensional translation group by a point 
group. The point group is either cyclic or a semi-direct product of cyclic groups. The 
expounded method of derivation of the line groups consists of first extending by the cyclic 
point groups and then obtaining the rest of the line groups by unification within the 
Euclidean group. To this purpose, a simple test is given to decide whether two line groups 
multiply into a third one. The method displays the subgroup structure of the line groups, 
relevant to the construction of their irreducible representations. All the line groups are 
derived and tabulated. 

1. Introduction: symmetry elements of stereo-regular polymer molecules 

The molecules of polymer substances consist of a large number of atoms (up to lo5 or 
even more). The shape of these macromolecules is frequently a very long chain. They 
consist of a great number of identical constituent units, monomers, of the size of 
ordinary molecules, Those macromolecules which are translationally periodic along a 
line are called stereo-regular. The translational period, denoted by a (whose length 
ranges from two to several dozen Angstroms) is a one-dimensional analogue of the 
primitive cell in crystallography. 

A stereo-regular macromolecule is usually characterised by an additional symmetry 
element-a screw axis, which can be denoted by nk, where n is a positive integer and k 
can take the values 0,1, . . . , n - 1. This means that the macromolecule coincides with 
itself if rotated by 27r/n around the axis of the molecule and subsequently translated by 
k a / n  along the same axis. 

To give a few examples, we mention cellulose, having the screw axis 2 r ,  isotactic 
polypropylene with 31 and polyisobutene with tI5 etc (Vainshtein 1959, 1966, Miller 
and Nielsen 1963). 

The other possible symmetry elements are mirror and glide planes, denoted by m 
and c respectively, two-fold rotations perpendicular to the chain, denoted by U (from 
the German word umklapp) and, of course, combinations of these. 

As examples, one can take polymethylene difluoride having m, a-form of gutta- 
percha which has c, polyvinyl chloride and polyglycine possessing both of them, and 
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polyisobutene and polytetrafluoroethylene with U (Vainshtein 1959, 1966, Miller and 
Nielsen 1963). 

A macromolecule may, of course, possess a number of symmetry elements simul- 
taneously. To be able to predict as much as possible physically, it is desirable to know all 
its symmetry elements and their mutual relations. For this it is useful to have a complete 
classification of all the possible symmetry groups of stereo-regular polymer molecules. 
These groups belong to the line groups which are the symmetry groups of three- 
dimensional objects translationally periodic along a line. 

It is the aim of this paper to derive and classify all (discrete) line groups, at the same 
time clarifying their subgroup structure, which we found of great use in our construction 
of their irreducible representations (required for quantum-mechanical applications). 

Of course, the molecules in a real polymer are of finite length; they can be bent, 
cross-linked and may contain various impurities and defects. Nevertheless, the model 
of a single isolated infinite linear ideal chain plays a central role in most of the 
theoretical investigations of polymer molecules. We have here an analogy with the case 
of the role of the ideal infinite monocrystal in theoretical solid state physics. As a matter 
of fact, many important physical properties of both of these systems are not very 
sensitive to deviations of the mentioned kind from the ideal model. The importance of 
the single chain model for calculation of vibrational spectra of polymers is evident from 
the book of Zbinden (1964), or the review article of Oleinik and Kompaneyets (1968), 
etc, and for electronic spectra (band structure) from Duke and O'Leary (1973), Suhai 
and Ladik (1973), Philpott (1975), HendekoviC (1975), etc. The purpose of our work is 
to enable one to make full use of the symmetries of the single chain models. 

2. Definition and general properties of line groups 

Having analysed the symmetry elements of the physical objects which are translation- 
ally periodic in only one direction, we turn now to a systematic investigation of all the 
ways in which they can be combined into line groups. By definition the line groups are 
those subgroups of the Euclidean group whose pure translations are integral multiples 
of one of them. Every transformation of a line group L leaves invariant the straight line 
(known as the invariant line throughout this paper) connecting the centres of masses of 
the elementary cells (i.e., the structure units of the polymer molecule which are 
repeated by the pure translations). Such a transformation can be denoted by: 

(Rlv+t), U E [0, l),  t integer, (1) 

where R is a proper or improper rotation around a fixed point chosen to lie on the 
invariant line, whereas U and t determine a fractional and a pure translation respectively 
along the same line. 

The symmetry transformation (1) acts as follows: 

(RID + t)r = Rr + (v + t)u, (2) 

where U generates all the pure translations in L. The composition law, as follows from 
(2), reads: 

(Rlv + t)(Ql w + q )  = (RQIu + t + Rw + Rq). (3 ) 

The unit element is (EIO), and the inverse of ( R ~ u  + t) is (R-'I-R-'v - R-'t) .  
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All the elements of L of the form (Elf) ,  i.e. the pure translations, constitute the 
translational subgroup T, which is invariant in L, i.e. T d  L, because 

(Rlu + t)(Elr')(RJu +t)-' = (EIRt'). 

The elements of a coset of T in L have a common rotational part R :  

(El t ' ) (Rlu+t )=(RIu+t+t ' ) .  

Each of these rotations R by itself leaves the line invariant, as one can see by 
applying R to r belonging to the line. As immediately seen from (3), the set of all R for 
a given L is a group, which we call the isogonal point group of L and denote by P. Hence 
every line group L can be expressed as the sum of 1P1 (the order of the group P) cosets of 
T: 

PI 
L= (RiIvi)T, (4) 

i = l  

where all vi E [0, 1). 
Since, as we have concluded, TdL and L/T= P, every line group L can also be 

defined as a subgroup of the Euclidean group which is an extension (Kurosh 1955) of T 
by P, where P is a point group leaving a line invariant, and T is a discrete group of 
translations along the same line. 

Involved extension-theoretical methods exist which make use of cohomology 
theory by which one could construct all the line groups in much the same fashion as was 
done for the space groups (Ascher and Janner 1965, 1968, Mozrzymas 1974). How- 
ever, a considerably simpler extension-theoretical method of construction could be 
developed in the case of line groups (making use of the generalised semi-direct product; 
see SijaEki et a1 1972). 

3. Physically distinct line groups 

Before we expound our method of construction of the line groups in detail, we first have 
to clarify which of them are physically distinct, i.e. to describe the equivalence relation 
dictated by the problem. 

Two line groups are equivalent if a conjugation by a translation and/or a proper 
rotation takes one into the other, because these transformations do not change the 
physical properties of the system. 

An important characteristic property of the physical systems considered is the 
existence of the mentioned invariant line for each of them. For simplicity we always 
choose the z axis to coincide with this line. 

In fact, it is then sufficient to consider only conjugations by the transformations 
which leave the z axis invariant, i.e. by translations along the z axis, by rotations 
around the same axis through an arbitrary angle, and by rotations around any axis in the 
x, y plane through 180". This is so because, as is easily seen, if two line groups are 
conjugate to each other by any proper Euclidean transformation, they are conjugate 
also by a transformation of the above restricted kind. 

As far as the rotational parts of the symmetry transformations are concerned, any of 
the mentioned conjugations gives: 

(Qlw +q)(Rlu +t)(Qlw+q)- '  = ( Q R W ' l . .  . ). 
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It follows that the isogonal point groups of equaivalent line groups are necessarily 
conjugated by proper rotations which leave the z axis invariant; hence only such point 
groups are equivalent in the framework of line group theory. 

It should be noted that this equivalence relation for point groups differs from the one 
used in crystallography and in molecular physics, where conjugation by any proper 
rotation generates an equivalent point group. All the difference resulting from the 
mentioned restriction (to conjugation by the rotations leaving the t axis invariant) 
consists in a possible breaking up of the usual equivalence classes of point groups into 
smaller ones. Let us now examine in detail this splitting. 

To begin with, any point group P containing an element of at least third order leaves 
only one line invariant, which, in our case, must be the z axis. If another point group P' 
is equivalent to this P in the usual sense, then they are conjugated by a rotation leaving 
the z axis invariant, hence, no breaking up of equivalence classes occurs in this 
case. Here belong the following standard point groups: C,, C,,, Cnh, D,, and 
Dnh, n = 3 , 4 , .  . . ; SZ, and Dnd, n = 2 , 3 , 4 , .  . . . 

On the other hand, two point groups leaving the z axis invariant and containing only 
involutions (i.e. elements of order two) may be conjugate by the rotation through 7r/2 
around a horizontal axis. Such groups are equivalent in the standard crystallographic 
sense, but not with respect to the equivalence we are dealing with. If a standard class 
contains such a pair of point groups, then it splits into two smaller classes. 

The involutions at issue are: I (the inversion through the origin), Cz and U (the 
rotations through T around the z axis and a horizontal axis respectively), a, and ah(the 
reflections in a vertical and the horizontal planes respectively). In the classes of the 
groups S2 = Ci, D2 and D z ~  no splitting occurs. Finally, the following classes of groups 
are the result of the mentioned splitting: CZ = {E, C2) and D1 = {E,  U} ;  C1, = {E, a,} and 
Clh = {E,  a h } ;  C Z ~  = CZ XClh and Dld = C1, x DIT; CZ,, = CZ X C1, and Dlh = C1, x Clh 
(they are obviously pairwise conjugate by the rotation through ~ / 2  around a horizontal 
axis). 

4. Two types of point and line groups 

Any (proper or improper) rotation leaving the z axis invariant we call R' type if 
Ra = a, and R- type if Ra = -a. The transformations of the R' type are: C,, n = 1 ,  
2 , .  , . (rotations through 27r/n around the z axis), vu, and their products. An R- 
transformation can always be written in the form q , R + .  

Therefore, any point group we are dealing with is either of P' type, containing only 
R +  transformations, or of P- type, when it contains also R- ones. The set of all Rf 
transformations in a given P- group is obviously an index-two subgroup, P'. Hence, P- 
can be decomposed into 

( 5 )  

(6)  

P-  = P+ -+ R-P'. 

In particular, the point groups of the P' type are C, and 

Cnu = Cn A Clu, n = 1 ,2 , .  . . 
( A  denotes the semi-direct product, SP). The P -  point groups for n = 1,2 ,  . . . can be 

t We assume here that the axis is perpendicular to the plane because otherwise, i.e. if the axis lies in the plane, 
C1, xD1 equals Dlh. 



Symmetry groups of polymer molecules 1275 

decomposed as follows (for further convenience we give also their SP forms): 

S Z n  = Cn + S~nCnr (7) 

D, =C, + UC, =Cn A D1; 

Dnd = c,, + udcnu = cn, h D; = (cn  h Ciu)  h D;, 

(9) 

(10) 

where the index on ud denotes that the angle between the axis of this rotation and the 
plane of uu equals 7r/2,,, D; = {E, ud}; 

Dnh = Cnu + UhCnv = Cnu A Clh = (Cn A Clu) A Clh. (11) 
Analogously, all the line groups are of L' or of L- type, depending whether the 

isogonal point groups are of the P' or of the P- type. Furthermore, it follows from ( 5 )  
that every line group of L- type can be decomposed: 

L- = L++(R-Iu)L', (12) 
where L' is that index-two subgroup of L- whose isogonal point group is precisely P' 
from ( 5 ) .  

The line groups of the L- type have the following important property. 

For every line group L- there exists an equivalent line group for which v = 0 in the 
decomposition (12), i.e. 

L++(R-~U)L+-L++(R-(O)L+. (13) 
To prove this statement it suffices to note that conjugation by (E\-v/2) does not 

change any element of L', whereas (El-v/2)(R-Iu)(EI-v/2)-' = (R-IO). 
Thus, the construction of all the line groups is herewith practically reduced to the 

derivation of all the distinct L' groups; all the L- groups are then obtained by adding the 
coset (R-IO)L+ to each L' group, where R- is one of the transformations displayed in 
equations (7)-(11) (if one obtains a group in this way). 

5. A method of contruetion of the Line groups with cyclic isogonal point groups 

Let L be a line group with a cyclic isogonal point group, P = {RI, R:, . . . , R; = E}. Then 
the representative (Rllul) of the first coset in the decomposition L=2;=1 (RiIvi)T 
determines all the others, i.e. (RIIvl)"T=(RfIFr(ul+Rlul+. . .+Rs-'vl))T= 
(RsIvs)T, s = 2,3,  . . . , n and Fr(x) denotes the fractional part of the real number x .  

If the line group under consideration is of L' type, then Rlv l  = U I  (omitting U for 
simplicity), so that (R,lu,) = (RflFr(svl)). Therefore, the problem of constructing L 
reduces in this case to finding all values of v 1  for which the set E:=, (RfIFr(svl))T is a 
group. It is easily shown that this is the case if and only if (Rllnvl)ET. Hence the 
solutions are 

(14) V I  = pln,  p = o ,  1 , . . . ,  n - 1 .  

In this way one obtains all the solutions; they are all distinct as will be shown later for 
every particular case separately. 
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If we consider an L--type line group, then the generator R 1  of its isogonal point 
group must be of R -  type, otherwise it would generate a P+-type point group. 
Therefore, (Rllvl)* = (R$O), ( R l l ~ 1 ) 3  = ( R ? p l ) ,  . . . . As P- is of an even order, say 2n, 
for every v l  E [0, 1) the condition (R l l v l )  E T  is satisfied, and Z:El (R1Iv1)’T is a 
group. Making use of (13) one can see that each of these line groups is equivalent to one 
of them, namely to 

In conclusion, for every cyclic point group of P’ type there exist n distinct line 
groups, while for any of P- type there exists exactly one. In this way for every cyclic 
point group P which leaves a line invariant one can construct all the extensions of T by P 
which are subgroups of the Euclidean group. 

6. A method of construction of the line groups with non-cyclic isogonal point groups 

It is an important fact that every non-cyclic point group we are dealing with is a 
semi-direct product of two or at most three cyclic ones (cf equations (6) and (8)-(11)). 

Let L be a given line group which is an extension of T by P = P1 A P2. 
Then L1 and Lz are those subgroups of L which contain T and whose isogonal point 

groups are P1 and P2 respectively. The subgroup L1 is invariant in L, the intersection of 
L1 and Lz is T ,  and the product L1L2 equals L. In other words, L is a generalised 
semi-direct product, GSP (SijaEki er a1 1972), of L1 and L2. 

The above statements give necessary conditions (see theorem 1 in the appendix), so 
that multiplying every line group L1 corresponding to P1 with every line group L2 
corresponding to P2 one cannot fail to obtain all the line groups L corresponding to 
P = P1 A P2. However, these conditions are not sufficient, i.e. not every product L1L2 is a 
group. 

It is shown in the appendix that the product of L1 and L2 defined above is a group if 

~ 2 +  R ~ v ~ - R ’ v ~ =  VI+ t, t = 0 ,  *1,*2,. . . , (15) 

where (R l l v l )  and (R2 /v2 )  are any coset representatives in L1 and L2 respectively, 
RI= R 2 R 1 R i 1  and v’ is the fractional translation corresponding to R’(see from 
theorem 2 to the end of the appendix). 

In conclusion, if one has all the line groups L1 which are the extensions of T by the 
point group P1 and analogously for LZ and P2, then all the line groups L of P = P1 A P2 are 
obtained by multiplying those LI and L2 for which the practical compatibility test (15) is 
satisfied. It is sufficent to take for R I  and R 2  the generators of P1 and Pz respectively, so 
that in practice one has to solve at most two simple equations. 

7. Results and discussion 

The line groups were first derived by Hermann (1928); for subsequent treatments see 
Alexander (1929), Shubnikov (1940), Belov (1956). The relevance of line groups for 
polymers was discussed by Vainshtein (1959, 1966) and also by Tobin (1955, 1960), 
Elliott (1969), Zbinden (1964), Oleinik and Kompaneyets (1968). 
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By the method expounded we have constructed all the line groups. The results are 
presented in table 1. 

Table 1. Classification of the line groups. Every element of a line group can be obtained 
from the listed general form by choosing s = 0, 1, . . . , n - 1, r = 0,1, . . . , q - 1 where 
q = n/2 and t = 0, * l ,  . . . . For every point group, the first line group listed is symmorphic 
(i.e. L = T A P), while the rest of them are non-symmorphic. Further, p = 1,2, . . . , n - 1. 

Corresponding line groups 
Point group 
( n  = 1 , 2 , .  . .) n odd n even 

General form of elements 

C" 
Ln 
Ln, 

Since we feel that the method of construction of the line groups might be applicable 
also to other group-theoretical problems in physics, a more detailed presentation has 
been prepared as an internal report?. 

An extensive list of polymers, each classified according to the line group which is its 
symmetry group, has been presented (BoioviC and VidakoviC 1976). All the irreduc- 
ible representations of the line groups have been derived in a thesis (BoioviC 1975) and 
it is hoped to publish the results. 

Appendix 

A group E is called an extension of a group K by a group G, and denoted by (i, E, s), if it 

t VujifiC: M, BoioviC I B and Herbut F 1977 Construction of the symmetry groups of polymer molecules 
Adelaide University internal publication. 
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contains a normal subgroup i(K) isomorphic to K, such that E/i(K) is isomorphic to G 
(Kurosh 1955. Michell964). Diagrammatically, one describes the above situation by a 
short exact sequence of homomorphisms: 

l + K S E & G +  1. ('4.1) 

We denote by s-l the multi-valued inverse map of the homomorphism s: E+ 

We are interested in the case when G is a semi-direct product (SP) of its two 
G, Ker(s) = i(K). The map s-l takes the elements of G onto the cosets of i(K) in E. 

subgroups: 

G = G1 A Gz, 64.2) 
which actually means 

GiQG, Gz<G, G l n G 2 = k ) ,  G = G1G2. (A.3a, b, c, d )  

We propose first to extend each of these factors separately, and then to unify the 
extensions. This is found to be a substantially simplified procedure. 

Let us first give the necessary conditions for the outlined construction. 

Theorem 1 .  If (i, E, s) is an extension of K by G = G1 A G2, then El = s-'(G1) and 
EZ = s-'(G2) are extensions of K by G1 and G2, respectively, and 

EiQE, Ez < E, El n E2 = i(K), E=E1E2; (A.442, b, c, d )  

(A.4e) s-l (gz)S-l(gl)[s -l(gz)l-l = s- (g2g1g3, 
for every gl E GI, and every g 2 ~  G2. 

In theorem 1 we assumed E to be given in advance. The inverse problem-how to 
construct E via El and EZ-k more important. The following theorem establishes a 
method of solution of this problem for a certain class of cases. 

Theorem 2. For given G = G1 A G2 and K, let (i, El, SI) and (i, E2, s2) be extensions of K 
by G1 and by Gz respectively, such that they both are subgroups of a larger group F, and 
El n E2 = i(K). Further let 

s;1(g2)s;1 (gl)[s;l(gZ)l-l = s;l(gZglg;l), 04.5) 
for every gl E G1, and every g2 E G2. Then: (i) E = E1E2 is a group; (ii) i(K)aE; and (iii) 
E/i(K)=G, i.e. E is an extension of K by G. 

Remark. In practice, it is sufficient to test (AS)  for generators of G1 and G2 only, since 
s;' and s;' give isomorphisms of G1 onto El/i(K) and G2 onto Ez/i(K) respectively, and 
conjugation is a homomorphism. 

In order to apply the test (AS) to the line groups, we specialise it as follows. Since 
here G = P, K = T ,  E = L, F is the Euclidean group, g = R ,  we have s - ' (R)  = (RIv)T, and 
(AS) takes the form 

( R  z I vz)T(R 1 I v 1 F(R2 I vz)-'T = ( R  '1 ')T, ('4.6) 
where R'  = R2R1R;', and v '  is the corresponding fractional translation. 

Finally, we arrive at the following very practical test: 

V Z +  Rzv1 - R ~ R I R ; ' V ~  = U'+ t, (A.7) 
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where v ’  corresponds to R ’ =  RZR1RY1. The test is satisfied, i.e. LILz is a group, if 
equation (A.7) has a solution among t = 0, il, *2, . , , . It is sufficient to apply (A.7) to 
the generators of PI and Pz only (cf the above remark). 
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